A moment problem for pseudo-positive definite functionals

نویسنده

  • Ognyan Kounchev
چکیده

A moment problem is presented for a class of signed measures which are termed pseudo-positive. Our main result says that for every pseudopositive definite functional (subject to some reasonable restrictions) there exists a representing pseudo-positive measure. The second main result is a characterization of determinacy in the class of equivalent pseudo-positive representation measures. Finally the corresponding truncated moment problem is discussed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

GENERALIZED POSITIVE DEFINITE FUNCTIONS AND COMPLETELY MONOTONE FUNCTIONS ON FOUNDATION SEMIGROUPS

A general notion of completely monotone functionals on an ordered Banach algebra B into a proper H*-algebra A with an integral representation for such functionals is given. As an application of this result we have obtained a characterization for the generalized completely continuous monotone functions on weighted foundation semigroups. A generalized version of Bochner’s theorem on foundation se...

متن کامل

On orthogonal polynomials for certain non-definite linear functionals

We consider the non-definite linear functionals Ln[f ] = ∫ IR w(x)f (n)(x) dx and prove the nonexistence of orthogonal polynomials, with all zeros real, in several cases. The proofs are based on the connection with moment preserving spline approximation.

متن کامل

Some new families of definite polynomials and the composition conjectures

The planar polynomial vector fields with a center at the origin can be written as an scalar differential equation, for example Abel equation. If the coefficients of an Abel equation satisfy the composition condition, then the Abel equation has a center at the origin. Also the composition condition is sufficient for vanishing the first order moments of the coefficients. The composition conjectur...

متن کامل

Positivstellensatz and Flat Functionals on Path ∗-algebras

We consider the class of non-commutative ∗-algebras which are path algebras of doubles of quivers with the natural involutions. We study the problem of extending positive truncated functionals on such ∗-algebras. An analog of the solution of the truncated Hamburger moment problem [Fia91] for path ∗-algebras is presented and non-commutative positivstellensatz is proved. We aslo present an analog...

متن کامل

Positivstellenzatz and Flat Functionals on Path ∗-algebras

We consider the class of non-commutative ∗-algebras which are path algebras of doubles of quivers with the natural involutions. We study the problem of extending positive truncated functionals on such ∗-algebras. An analog of the solution of the truncated Hamburger moment problem [12] for path ∗-algebras is presented and non-commutative positivstellenzatz is proved. We aslo present an analog of...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008